
INTERCONEXÃO DE REDES LOCAIS COM ROTEADORES

- LANs podem ser conectadas entre si com pontes (bridges)
- Por que não usar sempre pontes para construir redes grandes?
- Pontes implementam uma LAN única e a maioria das LANs oferece broadcast (a nível de enlace) como
 - Não faz sentido oferecer broadcast numa escala qualquer (imagine toda a rede UFCG!, toda a Internet!!)
- * Pontes usam enchente (flooding) em alguns algoritmos de encaminhamento de quadros
- ➤ Enchente não é aplicável em grande escala
- No ponto onde broadcast e/ou flooding deixa de fazer sentido, outro tipo de equipamento se faz necessário: O ROTEADOR!

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 1

INTERCONEXÃO DE REDES DE COMPUTADORES

EXEMPLO DE UMA REDE COM PONTES E ROTEADORES

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 4

INTERCONEXÃO DE REDES DE COMPUTADORES

POR OUE NÃO SÓ PONTES?

- Pontes não fazem conversão de protocolos da camada 3 (só operam na camada 2)
 - Se duas redes com protocolos de rede diferentes precisam ser interconectadas, deve-se usar um equipamento que converta protocolos dessa camada: um roteador multiprotocolo
- Pontes roteiam baseadas no endereço físico de cada estação
 - Essa solução não tem escala para grandes redes pois as tabelas de roteamento das pontes seriam enormes
- Limitam-se as estações vistas pelas pontes usando-se outras técnicas de roteamento (roteamento baseado em endereço lógico de estação ou de grupo de estações)
 - Roteadores implementam essas técnicas

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 2

INTERCONEXÃO DE REDES DE COMPUTADORES

ALGORITMO BÁSICO DE ROTEAMENTO

- Ao receber um pacote, o roteador:
 - Examina o endereço destino
 - Consulta uma tabela de roteamento
 - Encaminha o pacote para a interface de saída adequada
- Para evitar crescimento explosivo da tabela de roteamento, o endereço destino é normalmente quebrado em 2 partes
 - Parte vista pelo algoritmo endereço de rede
 - Parte não vista pelo algoritmo endereço de estação

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 5

- ❖ A tabela de roteamento é indexada apenas com a primeira parte do endereço destino
 - Pode haver exceções onde um ou outro endereço completo seja colocado na tabela de roteamento

INTERCONEXÃO DE REDES DE COMPUTADORES

CARACTERÍSTICAS BÁSICAS DE UM ROTEADOR

- Opera na camada de rede (nível 3)
 - Processa o protocolo de rede (p.ex. IP, IPX, X25)
 - Usa informações presentes no cabeçalho do pacote (p.ex. endereço destino)
- Tem como função básica encaminhar pacotes encolhendo a interface de saída apropriada
 Usa uma tabela de roteamento
- Não é transparente
 - > Tem um endereço (de rede e de enlace)
 - Estações sabem da existência de roteadores e enviam pacotes para eles encaminharem
 - Encaminhamento nó-a-nó (hop-by-hop)

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 3

INTERCONEXÃO DE REDES DE COMPUTADORES

- Supondo que o endereço destino seja quebrado em (Rede, Estação), um algoritmo típico de roteamento seria:
 - > Recebe pacote da camada de enlace
 - > Extrai o endereço destino
 - > Examina a parte Rede
 - Se estíver conectado diretamente a esta rede, mapeia o endereço destino (Rede, Estação) no correspondente endereço físico (MAC) se for tecnologia difusão, monta um quadro apropriado e encaminha o pacote pela interface adequada
 - Senão, Se o endereço destino (Rede, Estação) estiver na tabela de roteamento, Encaminha o pacote pela interface adequada
 - Senão, se a parte Rede estiver na tabela de roteamento, Encaminha o pacote pela interface adequada
 - Senão, encaminha o pacote para um roteador padrão (default), se houver; se não houver, acusa um erro de roteamento para o emissor do pacote

ATUALIZAÇÃO DE TABELAS DE ROTEAMENTO

- * Tabela de roteamento pode ser criada/mantida de forma:
 - Estática (em redes pequenas; através de configuração manual feita pelo administrador da rede)
 - <u>Dinâmica</u> (em redes maiores ou onde haja rotas alternativas (anéis) para um mesmo destino, através de configuração automática feita por programas / protocolos)
- Vamos examinar duas técnicas para roteamento dinâmico
 - Vetor Distância (Vector Distance VD)
 - Estado de Enlace (Link State LS)
- Três algoritmos são usados na prática (p. ex. na Internet):
 RIP (Routing Information Protocol) VD
 - OSPF (Open Shortest Path First) LS
 - ➤ BGP-4 (Border Gateway Protocol 4)

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 7

INTERCONEXÃO DE REDES DE COMPUTADORES

- * Inicialmente (assim que é ligado), cada roteador conhece apenas as redes diretamente conectadas a
 - R1 só conhece a Rede A, a Rede B e as redes R1-R2 e R1-R5
 - o R5 só conhece a Rede E, a rede R1-R5 e a rede R4-R5
- E assim por diante
- ❖ Na sua primeira exportação de rotas, R1 envia sua tabela de rotas para R2 e R5

Rede Destino	Próximo Nó	Custo
A	R1-d	0 (zero)
В	R1-d	0
R1-R2	R1-d	0
R1-R5	R1-d	0
Obs. Rx-d indica diretamente conectado na rede		

* R2 e R5 recebem a tabela de R1 e, juntando com o que já conheciam, ficam com as tabelas de roteamento seguintes

Rede Destino	Próximo Nó	Custo
A	R1	1
В	R1	1
R1-R2	R2-d	0
R1-R5	R1	1
R2-R3	R2-d	0

Rede Destino	Próximo Nó	Custo
Α	R1	1
В	R1	1
E	R5-d	0
R1-R2	R1	1
R1-R5	R5-d	0
R4-R5	R5-d	0

INTERCONEXÃO DE REDES DE COMPUTADORES

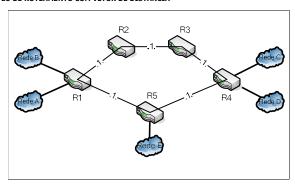
ROTEAMENTO COM VETOR DE DISTÂNCIA

- Usado pelo protocolo RIP (ainda em uso na sua versão 2 RIPv2)
- Cada roteador mantém uma tabela com a menor "distância" conhecida até cada rede destino e que conexão usar para chegar lá
- A métrica de distância pode ser
 - Número de nós (hops) ou enlaces a atravessar (mais comum)
 - Número de pacotes em fila até o destino
 - Atraso (em milisegundos)
- Cada roteador sabe a distância até cada vizinho
 - É simples descobrir isso, qualquer que seja a métrica usada
- Periodicamente, cada roteador envia sua tabela de roteamento completa para todos os seus vizinhos
 - Ao receber uma tabela de um vizinho, o roteador determina a melhor rota para cada destino possível (que ele já conhece ou está aprendendo agora) e atualiza sua tabela de roteamento

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 8

INTERCONEXÃO DE REDES DE COMPUTADORES

- Depois de decorrido o tempo necessário para a troca de tabelas de roteamento entre todos os roteadores (o chamado tempo de convergência), todos os roteadores aprendem como chegar a todas as redes
- * A tabela de roteamento de R1, por exemplo, ficaria:


Rede Destino	Próximo Nó	Custo
Α	R1-d	0
В	R1-d	0
С	R5	2
D	R5	2
E	R5	1
R1-R2	R1-d	0
R1-R5	R1-d	0
R2-R3	R2	1
R4-R5	R5	1
R3-R4	R2	2
R3-R4	R5	2

- * Como ficariam as tabelas de roteamento dos outros roteadores?
- Como não leva em conta a largura de banda disponível e outras características dos enlaces, algoritmos mais modernos usam outra técnica:
 - > Link State Routing
 - o Distance Vector, porém, ainda é muito usado (muita gente usa RIPv2 na Internet)

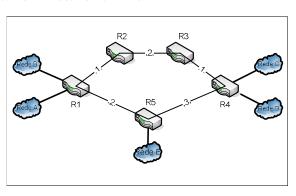
© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 10 © UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 11

INTERCONEXÃO DE REDES DE COMPUTADORES

EXEMPLO DE ROTEAMENTO COM VETOR DE DISTÂNCIA

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 9

INTERCONEXÃO DE REDES DE COMPUTADORES


LINK STATE ROUTING

- Usado pelo OSPF, por exemplo
 - Uso recomendado pelo IETF para a Internet
- Essencialmente, a toda a topologia e todos os custos em cada enlace são tornados conhecidos para todos os roteadores (na primeira vez; depois disso, somente as alterações percebidas em cada roteador são enviadas para os roteadores)
- * Cada roteador pode então determinar a melhor rota para cada destino

LINK STATE ROUTING - ALGORITMO

- * PASSO 1: Descobrir os roteadores vizinhos
 - Quando um roteador entra no ar, envia um pacote Hello em cada linha de saída para descobrir os vizinhos
- No caso de uma LAN, usa broadcast ou multicast
- ASSO 2: Medir/calcular o custo (p. ex., atraso) em cada linha
- * PASSO 3: Construir pacotes de anúncio de estado de linha (Link State Advertisement LSA)
 - > Contém informação sobre todos os vizinhos, com respectivos custos

EXEMPLO DE ROTEAMENTO COM ESTADO DE ENLACE

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 13

INTERCONEXÃO DE REDES DE COMPUTADORES

Roteador	Rede	Custo para a Rede ou do Enlace
R1	A	0
	В	0
	R1-R2	1
	R1-R5	2
R2	R2-R1	1
	R2-R3	2
R3	R3-R2	2
	R3-R4	1
R4	C	0
	D	0
	R4-R3	1
	R4-R5	3
R5	E	0
	R5-R1	2
	R5-R4	3

LSAs criados pelos roteadores (inicialmente)

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 14

INTERCONEXÃO DE REDES DE COMPUTADORES

A tabela de roteamento de R1, por exemplo, ficaria:

Próximo Nó	Custo
R1-d	0
R1-d	0
R2	4
R2	4
R5	2
R1-d	0
R1-d	0
R2	1
R2	3
R5	2
	R1-d R1-d R2 R2 R5 R1-d R1-d R2 R2

- * Como ficariam as tabelas de roteamento dos outros roteadores?
- * Observação importante: Na arquitetura TCP/IP
- Rede Destino sempre é indicada pelo par Endereço de Rede e Máscara de Rede
- Próximo Nó sempre é indicado pelo endereço IP do próximo nó

INTERCONEXÃO DE REDES DE COMPUTADORES

LINK STATE ROUTING - Conclusão

- O algoritmo tem vários problemas (contornáveis)
 - Roteador que diz que tem uma linha, mas não tem
 - Roteador que esquece de informar uma linha que tem Roteador que não encaminha os pacotes

 - Roteador que corrompe os pacotes antes de enviar
 - Roteador que calcula erradamente
 - Roteador que não tem memória suficiente para calcular rotas
- * Tais problemas podem ocorrer quando a rede tem dezenas de milhares de roteadores!
- ❖ O que normalmente não acontece!!

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 16 © UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 17

INTERCONEXÃO DE REDES DE COMPUTADORES

- * PASSO 4: Distribuir os LSAs
 - > São enviados inicialmente e posteriormente quando algo muda no entorno de um roteador (custo dos enlaces)
 - Usa flooding
 - Algoritmos especiais são usados para evitar explosão de LSAs (usando números de seqüência pacote com seqüência iqual ou inferior ao atual é descartado, idade dos pacotes, etc.)
 - Algoritmos especiais são usados para evitar inconsistências dado que cada roteador executa o algoritmo com informações diferentes dos demais
 - Para evitar geração de loops, máquinas não alcançáveis, etc.
- * PASSO 5: Calcula as novas rotas
 - > Usa algoritmo de Dijkstra para calcular os caminhos mais curtos até os outros roteadores
 - O melhor caminho entre um roteador Ri e um roteador Rj acaba indicando o melhor caminho entre o roteador Ri e todas as redes diretamente conectadas ao roteador Rj
 - > Os caminhos mais curtos são registrados na tabela de roteamento e o roteador volta à operação

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 15

INTERCONEXÃO DE REDES DE COMPUTADORES

CARACTERÍSTICAS AVANCADAS DE ROTEADORES

- Uso de enlace alternativo em situação de pico de tráfego
 - Bandwidth on Demand
- Priorização de tráfego
 - IP (TCP, UDP, SMTP, TELNET, FTP), IPX, ...
- ❖ Firewall simples e QoS simples
 - Filtro de pacote por endereço de rede, por endereço de transporte, por tipo de protocolo de
 - Controle de banda por endereço de rede, transporte, protocolo
 - Auto-proteção para ataques Denial of Service (DOS)
- Roteador atuando também como ponte
 - Com ou sem propagação de broadcast
- . Compressão de dados
- * Balanceamento de carga (Load Balancing) por interface, protocolo
- * Troca a quente de componentes (Hot Swapping)
- * Multiprotocolo (conversão de protocolo)

FATORES NA ESCOLHA DE UM ROTEADOR

- · Protocolos de rede suportados
- * Capacidade e tipo de interfaces para LAN (metálica, óptica, Gbic, SFP Ethernet, Fast Eth, Giga Eth,
- Capacidade e tipo de interfaces WAN (E1, E2, STM-1, etc. metálica, óptica)
- Desempenho de roteamento
- Poucos milhares a vários milhões sw pacotes por segundo(p.ex. 20.000 a 10.000.000)
- · Funcionalidade
 - Gerência Bridging

 - Compressão
 - Filtragem
- Custo
 - > US\$ 1.000 A US\$ 100.000

© UFCG / CEEI / DSC / PSN, 2017 * Parte 4.2: Roteadores * Pág. 19

INTERCONEXÃO DE REDES DE COMPUTADORES

ONDE COLOCAR ROTEADORES?

- * Entre 2 segmentos de LAN ou para se conectar a uma WAN
- * Temos 2 alternativas para organização da rede:
 - Rede com roteadores espalhados
 - Rede com roteadores centralizados (*Collapsed Backbone*) com topologia em estrela única ou múltipla
- * Razões para Collapsed backbone
 - > Servidores estão voltando a ser centralizados para diminuir o Custo Total de Propriedade CTP (Total Cost of Ownership - TCO)
 - Suporte, manutenção, teste de cabeamento, etc., tudo é mais fácil/barato

 - Seria a volta do CPD (Centro de Processamento de Dados) do Aquário?
 Os grupos de trabalho (workgroups) não aguentaram dar suporte aos servidores das redes locais
 - Criam-se depósitos/fazendas de servidores (server farms)
 - > Todos os segmentos das LANs têm de passar pelo ponto central
 - · Dado que os servidores estão nesse local